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Abstract

In this paper, we examine and compare De Morgan-, Kleene-, and Boolean-
disjunctive and conjunctive normal forms and consider their role in fuzzy set-
tings. In particular, we describe normal forms and truth tables for classical
fuzzy propositional logic and interval-valued fuzzy propositional logic that are
completely analogous to those for Boolean propositional logic.

Thus, determining logical equivalence of two expressions in fuzzy proposi-
tional logic is a finite problem, and similarly for the interval-valued case. Turk-
sen’s work on interval-valued fuzzy sets is reviewed in light of these results.

Keywords: fuzzy connectives, non-classical logics, fuzzy switching functions,
continuous t-norm, algebra

1 Introduction

This paper is expository—the principal mathematical results appear already in the
literature. See, for example, [2, 3, 4, 5, 8, 10, 11, 14, 15, 16]. However, some of this
mathematics does not seem to be well known within the fuzzy community. These
results can be gotten in short order by calling upon some standard theorems in
universal algebra. We make a strong effort here to give a presentation that is as
elementary as possible, with a leisurely and detailed exposition, to make the results
readily accessible to a general audience. Our treatment also sheds some mathematical
light on some work in [18, 19, 20, 21, 22, 23, 24, 25].

The notion of a normal form, or canonical form, pervades mathematics. This is
the identification of a unique selection from each equivalence class of an equivalence
relation together with a method of finding that selection, given an arbitrary element
of an equivalence class. A mundane example is writing a rational number in lowest
form—that is, with numerator and denominator relatively prime. Different equiva-
lence relations on matrices lead to some well-known examples such as the rational
and Jordan canonical forms. A normal form allows us, in particular, to check whether
two expressions are equivalent.



We are interested in normal forms for algebras arising in classical and fuzzy logics,
including Boolean, Kleene, and De Morgan algebras. The classical situation is this.
Let B = (B, A,V,,0,1) be a Boolean algebra. We are given two Boolean polynomials
such as

p(@,y,2) = (xVy) A2

and
q(z,y.2) =(@AyAn2)V ((xAy) AN)V(eAyAZ)

where the operations V, A, and ' are the usual Boolean operations of join, meet,
and complement, and we want to determine whether or not they are equivalent over
B. The question is the following. For any elements a,b,c € B, is it true that
p(a,b,c) = q(a,b,c)? That is what equivalence of the two expressions over B means.
There are two standard ways to answer this. One way is to write each polynomial
in its disjunctive normal form, and note whether or not these two forms are identical
(similarly for conjunctive normal forms). Another is to test the equality of the two
polynomials on just the elements from the two element Boolean algebra. This is
usually done using truth tables for the two-element Boolean algebra. Equality for
that Boolean algebra implies equality for any Boolean algebra, a rather startling
fact, but quite well known. And this holds for any finite number of variables x, ,
z,... and any such expressions. In asking about the equivalence of two expressions
for Boolean algebras, one has only to deal with the two-element Boolean algebra,
which in particular is finite.
In the (classical) fuzzy situation, one deals with the algebra

I=([0,1],A,V,,0,1).

where A and V are min and max respectively, and " is given by 2’ = 1 —x for = € [0, 1].
Consider the polynomials p and ¢ above in this situation. Are they equivalent when
considered as expressions with variables and operations from this algebra? That is,
is p(a,b,c) = q(a, b, c) for elements a,b,c € [0,1]7 How can we tell? We might find
some values of a, b, ¢ for which they are not equal and that would settle it, but failing
that, offhand we have an infinite number of values to check.

In the interval-valued fuzzy situation, the algebra of concern is the set {(a,b) :
a,b € [0,1],a < b} with component-wise operations A and V of min and max, respec-
tively, and negation ' given by (a,b)’ = (1 — b,1 — a). Thus we have the algebra

]1[2] = ({((Z, b) : CL,b S {07 1],(1 S b}7/\’\/’/707 1)

Determining the equivalence of the polynomials p and ¢ in this situation might seem
even more complicated.

The main purpose of this paper is to show that in both the classical fuzzy case
and in the interval-valued fuzzy case, these questions are easily handled. In each
case, one may as well work over a finite algebra, just as in the Boolean case. In



the Boolean case, it sufficed to consider only the two-element Boolean algebra. It
turns out that in the fuzzy case, there is an analogous three-element algebra, and
in the interval-valued fuzzy case, there is an analogous four-element algebra. This
at least reduces the problem of determining the equivalence of polynomials such as
those above to a finite procedure. But there are totally analogous normal forms as
well as truth tables in each case.

Further, this says something about the algebra of all fuzzy subsets of a set. Let
X be any set and F(X) be the algebra of all mappings of X into [0,1]. Oper-
ations A, V, and ' on F(X) are given by (A A B)(z) = min{(A(z), B(z)}, (AV
B)(z) = max{(A(z), B(x)}, and A'(z) =1 — A(x). So we have the algebra F(X) =
([0,1]%, A, V,",0,1), and ask the same question. Are the polynomials p and q above
equivalent when considered as expressions with variables and operations from this
algebra? This question reduces immediately to the fuzzy situation. For fuzzy sets A,
B, and C, p(A, B,C) = q(A, B,C) means that p(A, B,C)(z) = q(A, B,C)(x) for all
x € X, which means that p(A(z), B(z),C(x)) = q(A(z), B(z),C(x)). This in turn
means that p(a, b, c) = q(a,b,c) for all a,b,c € [0, 1], which reduces to determining
equality when a, b, and ¢ are elements of a certain three-element algebra. So deciding
whether two expressions with fuzzy sets as variables are equivalent is a finite problem,
and can be handled algorithmically via normal forms or truth tables.

These facts can be put in terms of propositional logic. Classical Boolean proposi-
tional logic is based on the two-element Boolean algebra, the algebra of truth values
for this logic. The same propositional logic results if the algebra of truth values is
taken to be any Boolean algebra with two or more elements. Fuzzy propositional logic
results when the algebra of truth values is taken to be I. But the same propositional
logic results when the truth value algebra is the three-element chain with the usual
lattice operations, and the obvious ’. Analogous statements hold for interval-valued
fuzzy logic and a certain four-element algebra. These are the principal facts we will
develop.

2 Some propositional logics

First we spell out exactly the mathematical framework for our discussion. We will
deal with algebras A = (A, A,V,,0,1), where A is a binary operation on the set A,
typically called “meet”, or “intersection”, or “conjunction”, V is a binary operation
on A typically called “join”, or “union”, or “disjunction”, ’ is a unary operation,
which will be referred to as “not”, and 0 and 1 are constants, or nullary operations.
So the algebra A is of type (2,2,1,0,0). We now build a certain such algebra, called
the term algebra, which is basic in all that follows.

Let V be a non-empty set, the set of wvariables. Using the operation symbols
A, V), 0,1, form polynomials in the usual manner using the variables, and parenthe-
ses. Such a polynomial will be called a term. The set T of all these polynomials,
or terms, is also called the set of well-formed formulas. For example, if x,y, z are
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variables, then x V y, (z A 2') V x, and 3/ are terms, but not zy’ V A'z. Also 0 and
1 are terms, as are 0/, 1’, x V 0/ and so forth. The set T with its connectives is an
algebra. For example, if s,t € T, then sV t is a term, and similarly for the other
operations. This yields the algebra

T = (T, A,V ,0,1),

called the term algebra with variables V' and operations A, V), 0, 1. It is again of type
(2,2,1,0,0). The term algebra is infinite, even when V' is finite.

Now let A = (A, A, V,”,0,1) be any algebra of the same type. (We will consistently
use the same symbols A, V., 0, 1 for our operations since all our algebras will be of the
same type.) For any mapping v : V' — A, there is a unique homomorphism v : T — A
agreeing with v on V. For example, for the term (z A2') Vz, v((zA2Z') V) =
(v(x) A (v(2))) Vo(z). In building a logic, we talk of A as the truth value algebra,
and call the maps v truth evaluations.

In the set T, we say that two terms s and t are logically equivalent if v(s) = v(t)
for all truth evaluations v. This is the same thing as saying that ¢(s) = ¢(t) for all
homomorphisms ¢ : T — A. If this is the case, we write s =, t. The relation =,
is an equivalence relation, but in fact is also a congruence. This means that the set
of equivalence classes of this equivalence relation forms in a natural way an algebra
of type (2,2,1,0,0), the same type as T. If [s] and [t] denote the equivalence classes
containing the terms s and t, respectively, then [s] A [t] = [s A t] is well defined, and
similarly for the other operations. The resulting quotient algebra T/ =,, which we
will denote by L, is the propositional logic in the variables V' with truth values in
the algebra A. It is also called the Tarski-Lindenbaum algebra.

In all of the cases we consider, the algebra A is a De Morgan algebra—that is, a
distributive lattice (A4, V,A,0,1,) of the type (2,2,0,0,1) satisfying identities

(xVy) =2 Ny
(xAy) =a'Vy

=z
Some are also Kleene algebras—that is, De Morgan algebras satisfying
AT <yVy
for all z,y. And some are Boolean algebras—De Morgan algebras satisfying identities
rAx=0andzVva =1

The logics Ly are again De Morgan, Kleene, or Boolean algebras, respectively, ac-
cording to the properties of A. In fact, IL, is the free De Morgan, Kleene, or Boolean
algebra, respectively, on the set V' of variables.

There are six principal cases of interest to us:
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1. B=(B,A,V,/,0,1), any Boolean algebra.

2. 2=({0,1},A,V,,0,1), the two element Boolean algebra.

3. I=([0,1],A,V,",0,1), the algebra of truth values for classical fuzzy logic.
4. 3 =({0,u,1},A,V,,0,1), where {0,u, 1} is the lattice

O— L — =

and A,V are the usual lattice operations, and ’ fixes u and interchanges 0 and
1.

5. 12 = ({(a,b) : a,b € [0,1],a < b},A,V,,0,1), the algebra of truth values for
interval-valued fuzzy logic.

6. D= (D,A,V,,0,1), where D is the lattice pictured below.

and A and V are the lattice operations, and ’ interchanges 0 and 1 and fizes u
and v. This algebra is called diamond.

Forming IL,, for various algebras of truth values A gives various algebras, or propo-
sitional logics Ly, but different truth value algebras can give the same propositional
logic. In fact, in the list above

]L’IB - Lz
Ly =1Lj
Lyz =Lp

Again, exactly what does this mean? It means that two polynomials, or expressions,
or terms, that is, two elements in T, are logically equivalent over a Boolean algebra
B if and only if they are logically equivalent over the two element Boolean algebra.
They are logically equivalent where the algebra of truth values is the unit interval
with the standard operations of fuzzy logic if and only if they are logically equivalent
over the three element Kleene algebra 3. The analogous statement holds for interval-
valued fuzzy logic and the logic given by the four element algebra D of truth values.

5



And as pointed out, it means that it is a finite procedure to determine the logical
equivalence of two expressions in fuzzy sets, with the usual connectives.

The first step in establishing these equalities is the following quite easy, but gen-
eral, proposition.

Definition 1 Let G and H be algebras of the same type. If for every pair of distinct
elements x and y of the algebra G, there is a homomorphism  : G — H such that
p(x) # B(y), then H separates points of G.

Proposition 2 If H separates points of G, then s =g t implies that s =g t.

Proof. Suppose that H separates points of G and that s =g ¢ does not hold. Then
there is a homomorphism ¢ : T — G such that ¢(s) # ¢(t) and a homomorphism
B : G — H such that Sp(x) # Be(y). The homomorphism S¢ : T — H says that
s =g t does not hold. m

Corollary 3 If H separates points of G and G separates points of H, then Lg = LLy.
Corollary 4 LetB =[], . A be a product of copies of the algebra A. Then Ly = L.

Proof. Mapping A to the diagonal of [[ . A says that [] . A separates points
of A, If x,y € [[,cx A, and = # y, then some component of x is not equal to that
component of y. Project [],.y A to A along that component. Thus A separates
points of [T,. v A. =

Corollary 5 Let F(X) = <[O, 115, AV, 1,0, 1) be the algebra of all fuzzy subsets of
the set X. Then Lgrx) = L.

Proof. F(X) is the product of copies of the algebra I, one copy for each element of
X.m

An analogous corollary may be stated for interval-valued fuzzy sets.

Note that if H is isomorphic to a subalgebra of G, then G separates points of H.
There are theorems spelling out exactly when Lg = Ly, but they go beyond what we
need here.

Every Boolean algebra B contains the two element Boolean algebra, so to show
that Ly = Lo, it suffices to show that for z and y different elements in B, there is
a homomorphism B — 2 taking = and y to different elements in 2, that is, that 2
separates points in B. This follows from M. H. Stone’s prime filter theorem, since
homomorphisms to 2 are in one-to-one correspondence to prime filters of the Boolean
algebra. A proof of the prime filter theorem can be found in [17].

Consider now the claim that Iy = ILg. The algebra I clearly contains a copy
of 3, namely the three element subalgebra {0,1/2,1}. So we need to show that 3
separates points of I. Let a € [0, 1] with 0 < a < 1/2. Then I — 3 with [0,a) going
to 0, [a,1 — a] going to u, and (1 — a, 1] going to 1 is a homomorphism. Now, given
x,y € [0,1] with x # y, the element a can be picked so that = and y go to different
places in 3. So we have



Theorem 6 Fuzzy propositional logic Ly is the same as Lz, the three-valued Kleene
propositional logic.

The algebra Il contains a copy of I, namely the subalgebra

{(0,0),(0,1),(1/2,1/2), (1, 1)}

So we need to show that I) separates points of 1. Consider the pictures in Figure 2.

(0,1} , (1,1, (0,1 ' (1.1}

{
0

'._(-’1(-’_.' .I_(_r‘r_r_l.

These pictures describe a family of homomorphisms from I!? to I as follows For each
point on the line 1 —x, 0 < x < 1, draw the horizontal and vertical lines through the
point. This will divide the triangle into three or four regions, depending on whether
the point is below or above the diagonal. Map the points in these regions as indicated.
It is an easy exercise to check that each of these maps is an algebra homomorphism,
that is, preserves meets, joins, negations, 0 and 1. These homomorphisms separate
points because, given two different points in the triangle you can pick a point on the
line 1 — x that gives horizontal and vertical lines separating the points. Thus we have

Theorem 7 Fuzzy interval-valued propositional logic Ly is the same as Ly, the four-
valued diamond propositional logic.

Let V be the set of variables and 1 the algebra of truth values. Given two elements
s and t in T, how can we tell whether or not they are logically equivalent in fuzzy
propositional logic? For every map v : V' — [0, 1], we must determine whether or
not the extension v of v to a homomorphism T — I satisfies v(s) = v(t). There are
infinitely many such maps v. But by Theorem 1, it suffices to make this determination
when the algebra of truth values is 3. Since any element of T involves only finitely
many variables, this is a finite problem, and indeed may be accomplished using truth
tables for 3.

For the case of two variables {x,y}, for example, for s = (x Vy) A2’ and ¢t =
' A ((3:’ Vy) v y) , the truth values shown in Table 1 are showing that s and t are
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Table 1:

logically equivalent in fuzzy propositional logic. Note that for n variables, a truth
table for 3 has 3" rows.

For interval-valued propositional logic, it suffices to determine whether or not for
every map v : V — I, the extension v of v to a homomorphism T — D satisfies
v(s) = v(t). Again, since any element of T involves only finitely many variables,
this is a finite problem that may be accomplished using truth tables for . For n
variables, a truth table for ID has 4™ rows.

One can take for the algebra of truth values the algebra F(X) = ([0, 15, \/,’>

of all fuzzy subsets of a set X and conclude things about expressions in fuzzy sets
themselves. This algebra is also a Kleene algebra, and the propositional logic L z(x)
is the same as Lj.

3 Normal forms

When describing normal forms and procedures for obtaining them, we will work as
above with the term algebra T of type (2,2,1,0,0), with operation symbols A, V,
1,0,1. We will assume that the set V' of variables is finite. This makes the discussion
a little easier. So a polynomial, or a term, in these variables is an element in T.
We will interpret these forms in the propositional logics of interest to us. First some
definitions.

Definition 8 A De Morgan algebra is a bounded distributive lattice
(A7 /\7 \/7/ ) 0? 1)

with an involution ' that satisfies De Morgan’s laws. A Kleene algebra is a De
Morgan algebra that satisfies x Ao’ < yVy'. A Boolean algebra is a Kleene algebra
that satisfies x N2’ =0 andyVy =1

We state the definitions this way to emphasize that they are successively more
restrictive. We note the following.



e 1% and D are De Morgan algebras and are not Kleene algebras.

e [ and 3 are Kleene algebras and are not Boolean algebras.
Only slightly more difficult are the following.
Proposition 9 Ly is a De Morgan algebra and is not a Kleene algebra.

Proof. Let z and y be distinct variables. We show that [z A 2'] < [y V /] is false.
The square brackets mean the equivalence class containing the term within. We need
to show that [z A 2] Ay V y/] is not [z A 2'], or that z Az" and (z A 2’) A(y V') are
not logically equivalent. There is a homomorphism ¢ taking = to v € D and taking
ytov € D. Then p(x Az') =uwand o ((x A)AN(yVY))=plxAz)ANp(yVy)=
u A v = 0. That does it. m

The following proposition is similar.
Proposition 10 L3 is a Kleene algebra and is not a Boolean algebra.

We first deal with normal forms for diamond propositional logic, or equivalently
for fuzzy interval-valued propositional logic. The problem is this. The elements of
LLp are equivalence classes, with logical equivalence being the equivalence relation.
Pick from each equivalence class an element (its “normal form”) so that its form
alone tells whether or not it is a chosen element. Further, given any element ¢ € T',
give an algorithm for transforming ¢ to that normal form. So a normal form is a
representative of each equivalence class and a prescription for getting that particular
representative. The basis for getting normal forms for the De Morgan, Kleene, and
Boolean propositional logics is the notion of join-irreducible elements in lattices, and
determining those elements in those logics.

Definition 11 An element x of a finite lattice (L, \,V) is join-irreducible if it is
distinct from 0 and is not the join of strictly smaller elements. Dually, an element
1s meet-irreducible if it is distinct from 1 and is not the meet of strictly larger
elements.

For example, every nonzero element in 3 is join-irreducible, and in D, every el-
ement except 0 and 1 is join-irreducible. The pertinent fact for us is the following
proposition.

Proposition 12 In a finite distributive lattice, every element is uniquely the join of
pairwise incomparable join-irreducible elements.



Proof. If an element x is not join-irreducible, then z = z; V x5, with each z;
strictly smaller than z. If x; is not join-irreducible, write it as the join of strictly
smaller elements, and so on. By the finiteness of the lattice this process stops. So
x =1y VY2 V..Vy,, with the y; join-irreducible. Throw out any y; that is strictly
smaller than some other. The result is x written as the join of pairwise incomparable
join-irreducible elements.

Now to the uniqueness part. If an element x is itself join-irreducible, there is no
problem Suppose that t =z Vs V-V, =y1 Vya V- - Vy, with the x; pairwise
incomparable join-irreducible and strictly smaller than z, and similarly for the y;.
Then

=z, AN(y1 Vya V- V)
=(x; ANy1)V(zi Ayo) VeV (2 Ayn)

and since z; is join-irreducible, x; = x; A y; for some j. Thus z; < y;. Similarly,
y; < x for some k, whence z; < x. The 2’s are incomparable, so ¢ = k and so
x; = y;. Thus each z; is some y;. Similarly, each y; is some z;, and uniqueness
follows. m

What does this have to do with normal forms for L? We are assuming that the
set V of variables is finite. Every element of t € T', that is, every term, is an expression
in those finite number of elements of V. Now, use the axioms of a De Morgan algebra
to transform ¢ into a join of meets of the variables and their negations. The variables
and their negations are called literals. Thus, the result is an element of 7" of the
form 1 V xo V --- V x,, with the z; distinct and each x; a meet of distinct literals.
This transformation of ¢ does not change the element of Ly that it represents. That
is, t and ¥ V2o V - -+ V x, are logically equivalent. But there are only finitely many
elements in 7" of this form, there being only finitely many variables. Thus

Proposition 13 If the set of variables is finite, then Ly is finite.

We have observed that every element of Ly is a join of meets of literals. So for
an element of Ly to be join irreducible, it must be a meet of literals.

Corollary 14 Every element of Ly is uniquely the join of pairwise incomparable
join-irreducibles, and every join-irreducible is a meet of literals.

We still need to identify the meets of literals that are join irreducible, and the
ordering between these join irreducibles. This is the real heart of the matter, and the
hardest part. For this, we also need the following.

Theorem 15 For any truth value algebra A, and map ¢ : V — A, there is exactly
one homomorphism

ﬂ : LA — A
such that B([v]) = ¢(v) for allv € V.
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Proof. For t € T, there is a unique homomorphism @ : T" — A extending .
Now [t]a = [s]a in L, implies that @ () = @ (s). Thus for [t] € Ly, we can let
B([t]) = @(t). It is straightforward to show that 5 is a homomorphism. Moreover, [
is unique because @ is unique. =

Theorem 16 Let a and b be conjunctions of literals in Ly with b < a. Then

1. Every literal that occurs in a also occurs in b.
2. a =1 if and only if they are the conjunctions of exactly the same literals.

3. a 1s join irreducible.

Proof. (1) Suppose ¢ is a literal that occurs in ¢ and not in b. Define a function
© :{v1,...,v,} — 3 by
0 ifv,=c
)=« 1 ifvy;=¢
u otherwise

Then ¢ extends to a homomorphism satisfying ¢ (a) = 0 and ¢ (b) = u. Thus b does
not lie below a.

(2) This follows from (1).

(3) Define a function ¢ : {vq,...,v,} — D by

if v; occurs in a and v, does not occur in a
if v} occurs in a and v; does not occur in a
if v; and v} both occur in a

if neither v; nor v} occur in a

o (v;) =

S O

Then ¢ extends to a homomorphism satisfying ¢ (a) = w or 1 and for b < a, ¢ (b) =0
or v. Thus the join of all conjunctions b strictly below a cannot equal a. =

Theorem 17 Let a and b be conjunctions of literals in Lg with b < a. Then

1. Every literal that occurs in a also occurs in b.
If no more than one literal occurs in a for any variable, then a is join irreducible.

If at least one literal occurs in a for every variable, then a is join irreducible.

If both literals occur in a for at least one variable, but for at least one variable
no literal occurs in a, then a is join reducible.
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Proof. (1) The proof of this is the same as for D.
(2) If no more than one literal occurs in @ for any variable, define a function

¢ {v1,...,v,} — 3 by

1 if v; occurs in a
- e i
¢ (v;) =< 0 if v} occurs in a
1 otherwise

Then ¢ extends to a homomorphism satisfying ¢ (a) = 1 and for every b such that
b < a, ¢ (b) =0 or u. Since the join of 0’s and u’s cannot equal 1, the join of all such
b’s does not equal a. It follows that a is join irreducible.

(3) Suppose at least one literal occurs in a for every variable. Define a function

¢ {v1,...,vn} — 3 by

1 if v; occurs in a and v, does not occur in a
¢ (v;) =< 0 if v} occurs in a and v; does not occur in a
u if v; and v} both occur in a

Then ¢ extends to a homomorphism satisfying ¢ (a) = v or 1 and for every b such
that b < a, ¢ (b) = 0. Since the join of 0’s and u’s cannot equal 1, the join of all such
b’s does not equal a. It follows that a is join irreducible.

(4) If both literals occur in @ for at least one variable, and for k£ > 1 variables no
literal occurs in a, let

b:\/(a/\cl/\-~-/\ck)

where ¢4, ..., ¢, range over all combinations of literals such that neither ¢; nor ¢, occurs
in a. We prove that b = a by showing that there is no homomorphism ¢ : A — 3
that separates them. Let v; be a variable such that both v; and v, occur in a. If
¢ (v;) = 0or 1 then ¢ (a) < ¢ (v;) A(p (v;)) = 0and ¢ (b) < ¢ (a) = 0. Thus we may
assume that ¢ (v;) = u for all variables that occur twice in a. For the same reason,
we may assume that each literal that occurs in a, whose negation does not occur in
a, maps to u or 1. Thus ¢ (a) = u. Since b < a, either ¢ (b) = ¢ (a) or ¢ (b) = 0.
Now ¢ (b) > p(aNci A ANeg) =@ (a) ANp(cr) A+ Ao (e) for all literals ¢y, ..., ¢
such that neither ¢; nor ¢ are in a. Pick the list such that ¢ (¢;) is either u or 1. For
this choice, u > ¢ (b) > ¢ (a) A (c1) A+ - A (cg) = u. Thus no homomorphism into
3 separates a and b, proving that they are equal. m

These last two theorems tell us what the join irreducibles are in the De Morgan and
in the Kleene case, and tell us what the ordering is between these join irreducibles.
It is clear that in both cases, these join irreducibles form lattices. They are not
sublattices of Ly and Lz but do get lattice structures from the partial ordering of
these algebras.

We remark at this point that in Lo, the join irreducibles are the conjunctions of
literals with exactly one literal for each variable. This is easy to see, just using the
Boolean algebra axioms.
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3.1 Normal forms for fuzzy interval-valued logic

The normal form for the De Morgan algebra Ly now follows readily. The join irre-
ducible elements are exactly the conjunctions of distinct literals, and the element 1.
Since Ly is a finite distributive lattice, every element can be written uniquely as a
conjunction of pairwise incomparable join irreducibles.

Following is a precise procedure for putting an arbitrary term w in the variables
X1, ..., T, in this De Morgan disjunctive normal form:

1. Given a term in 7', first use De Morgan’s laws to move all the negations in, so
that the term is rewritten as a term w; which is of lattice type in the literals,
0, and 1.

2. Next use the distributive law to obtain a new term w, from w; which is a
disjunction of conjunctions involving the literals, 0, and 1. At this point, discard
any conjunction in which 0 or 1’ appears as one of the conjuncts. Also discard
any repetition of literals from any conjunction, as well as 1 and 0’ from any
conjunction in which they do not appear alone (if a conjunction consists entirely
of 1’s and 0’s, then replace the whole conjunction by 1). If no conjunctions are
left, then you have the empty join—the normal form for 0. This yields a term
ws.

3. Now discard all non-maximal conjunctions among the conjunctions that ws is
a disjunction of. The type of conjunctions we now are dealing with are either
conjunctions of literals or 1 by itself. This process yields a term wy.

The term thus obtained is now in De Morgan disjunctive normal form, and rep-
resents the same element as w when interpreted in L.

3.2 Normal forms for fuzzy logic

Following is a procedure for putting an arbitrary term w € 7 (21, xa, . . ., Z,) in Kleene
normal form:

1. Follow the steps in the previous section to put the term in De Morgan disjunctive
normal form wy.

2. At this point, replace any conjunction of literals, ¢, which contains both literals
for at least one variable by the disjunction of all the conjunctions of literals
below ¢ that contain exactly one of the literals for each variable not occurring
in ¢. This process yields a term ws.

3. Finally, again discard all non-maximal conjunctions among the conjunctions
that are left. If no conjunctions are left, then you have the empty join—the
normal form for 0. This process yields a term wg.
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The term thus obtained is now in Kleene disjunctive normal form. Note that
when interpreting these terms in LLg, the element obtained at each step is equal to
the original element w interpreted in Lg.

3.3 Normal forms for Boolean logic

Here is the procedure for finding the Boolean disjunctive normal form.

1. Follow the steps in the previous two sections to put a term w in Kleene disjunc-
tive normal form wg.

2. If wg = 1, replace wg by the disjunction of all the conjunctions that contain
exactly one literal for each variable. Otherwise, discard any conjunction of
literals, ¢, which contains both literals for at least one variable; and replace any
conjunction of literals, ¢, that does not contain both literals for any variable by
the disjunction of all the conjunctions of literals below ¢ that contain exactly
one of the literals for each variable not occurring in ¢. This process yields a
term ws.

3. Finally, again discard all non-maximal conjunctions among the conjunctions
that are left. If no conjunctions are left, then you have the empty join—the
normal form for 0. This process yields a term wsg, the Boolean disjunctive
normal form for L.

4 Comparison of normal forms

The dual forms to these various disjunctive normal forms are called conjunctive nor-
mal forms. For example, in the fuzzy interval-valued case, every element is uniquely
the conjunction of pairwise incomparable disjunctions of literals, and any disjunction
of literals is meet irreducible. We do not go through the details for these conjunctive
normal forms. We just remark that applying De Morgan laws to the negation of
the disjunctive normal form gives the conjunctive normal form of that negation. For
any term w € T, let Dg (w) denote the Boolean disjunctive normal form, Dy (w) the
Kleene disjunctive normal form, and D, (w) the De Morgan disjunctive normal form
of that term. Let Cg (w), Cx (w), and Cp (w) denote the corresponding conjunctive
normal forms. The procedures for constructing the disjunctive normal forms, and the
dual procedures for constructing the conjunctive normal forms, make it clear that
interpreted as elements of Ly the following equalities and inequalities hold:

Dg (w) < Dy (w) < Dy (w) = Cpq (w) < Ci (w) < Cp (w)
Interpreting these elements in LLg yields

D (w) < D (w) = Dy (w) = Cp (w) = Ckc (w) < Cp (w)
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and interpreting these elements in Lo yields
Dg (w) = Di (w) = D (w) = Cp (w) = Ck (w) = Cp (w)

But more is true. Each of the congruences =p, =3, and =5 on the term algebra T
induces a partition of T, and these partitions are successively coarser. It is easier to
be equivalent under =, than under =3, for example. This means that for our three
propositional logics, which are Ly, L3, and Ly, we have homomorphisms

T—)L]D)i]l‘gilq

and of course each is onto. Let t € T. Now ¢ determines equivalence classes [t]=,,
[t]=,, and [t]=, which are elements of Lp, L3, and Ly, respectively. We have of course,
k([t]=,) = [t]=s, and B ([t]=,) = [t]=,. But S is not one-to-one: it takes many elements
onto [t]=,. The elements of T that are in [t]=,have the same Boolean disjunctive
normal form d, and have the same Boolean conjunctive normal form c¢. These forms
are representatives of the element [t|—,. As noted in the discussion of normal forms,
[d]=, < [c]z;- The elements of these two equivalence classes all represent the same
element [t]=, in Lo, but distinct elements in LLg. The elements of Lg that 3 takes
onto the element [t]=, form a sublattice of L3 with smallest element [d]=, and largest
[c]=,. This is because in a lattice, the set of elements in a congruence class forms a
convex set, in this case the congruence class being all those elements of ILg that go
onto [t]=,. These facts follow from first principles of algebra homomorphisms and the
normal form discussion above.

Similar remarks hold for the homomorphism « : Ly — L3, and in fact for the

composition Sk.

5 Truth tables and normal forms

It is a simple exercise to derive the disjunctive normal form and the conjunctive nor-
mal form for Boolean algebras from “truth tables”. The truth tables are constructed
from the relevant algebra of truth values. For the Boolean case, the algebra of truth
values is the Boolean algebra with two elements shown in Table 2.

r ylxANy xzVy o

0 010 0 1

1 0]0 1 0

0O 1|0 1 1

1 1|1 1 0
Table 2:

To find the disjunctive normal for the expression (a V b) A ¢ in three variables, one
writes down Table 3. In those rows that have value 1 in the column of the expression
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a b cl(aVvb)Ac a b cl(aVvb)Ac
0 0 00 0 1 1|1
0 0 1(0 1 0 1|1
0 1 00 1 1 0]0
1 0 00 1 1 1)1

Table 3:

to be put into disjunctive normal form, form the conjunction x Ay A z where x is a or
a’ according as to whether the value in column « is 1 or 0, and similarly for the other
two variables. The disjunction of these conjunctions is the Boolean-disjunctive
normal form. There are three conjunctions to be taken in this case, and we get

(aVb)Ace=(ad NbAc)V(aAb Ae)V(aANbAC).

To find the conjunctive normal for the expression (a V b) Ac’ in three variables, one
writes down Table 4. In those rows that have value 0 in the column of the expression

a b c|(aVb AL a b c|(aVb) AL
0 0 0]0 0 1 1]0
0 0 1]0 1 0 1]0
0 1 0]1 1 1 01
1 0 0|1 1 1 11]0
Table 4:

to be put into conjunctive normal form, form the disjunction z VyV z where x is a or
a’ according as to whether the value in column « is 0 or 1, and similarly for the other
two variables. The conjunction of these disjunctions is the Boolean-conjunctive
normal form. There are five disjunctions to be taken in this case, and we get

(aVb)Ad =(aVbVe)A(aVbV )N (aVY V)N (@ VOVI)N(d VY V).

The disjunctive and conjunctive normal forms for the fuzzy case can also be re-
covered from truth tables. The table of truth values for the fuzzy case is depicted in
Table 5.

The disjunctive normal form of an element ¢ for the fuzzy case is gotten from its
truth table as follows:

e For those rows that have value 1 in the column of the expression to be put into
disjunctive normal form, form the conjunction of the variables with truth value
equal to 1 with the negations of the variables with truth value equal to 0 (and
leave out variables with truth value equal to w).
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x ylrxAy xVy o r ylxANy zVy 2
0 010 0 1 U U u U U
0 110 1 0 uw 010 U U
1 0]0 1 0 u 1 |u 1 U
1 11 1 0 0 |0 U 1
1 uw|u 1 0

Table 5:

e For those rows that have value u in the column of the expression to be put into
disjunctive normal form, form the conjunction of the variables with truth value
equal to 1 with the negations of the variables with truth value equal to 0, and
with both the variables and the negated variables of the variables with truth
value equal to u.

The irredundant Kleene-disjunctive normal form for the expression is then ob-
tained by discarding redundant conjunctions—that is, any conjunction that contains
the same, and possibly more, literals as another conjunction in the term.

Theorem 18 The scheme described above yields the disjunctive normal forms for
(classical) fuzzy logic.

Proof. To see that this scheme works for a term ¢, we show that for every join
irreducible p < t there is a join irreducible p’ picked up by the scheme satisfying
p < p' <t. Then we show that every join irreducible p picked up by the scheme lies
below t.

Let t be a formula, and let p be a join irreducible with p < ¢.

Case 1 p contains each variable at most once.

In this case consider the row in which each variable occurring in p (not negated)
is assigned a 1, each variable occurring negated is assigned a 0 and each variable
not occurring is assigned a u. This valuation clearly sends p to 1, and since
p < t it also sends t to 1. Further, the scheme applied to this row now picks up

p.
Case 2 p contains each variable at least once.

In this case, consider the row in which each variable only occurring unnegated
is assigned 1, each variable occurring only negated is assigned 0, each variable
occurring twice is assigned u. In this row, p is assigned value u, and so t is
assigned either u or 1. Either way the scheme will pick up a p’ that is join
irreducible and p < p’ < t.
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Therefore the scheme picks up all the maximal join irreducibles below ¢ (and
perhaps some that are not maximal).

For the converse, let p be a join irreducible that is picked up by the scheme from
a row where ¢ is assigned a 1. We want to show that p <. Since v (t) = 1 for the v
given by that row, there is some p’ with p’ join irreducible, p’ < ¢t and o (p') = 1. If
P’ contains any literal not contained in p, then ¥ (p’) < u, and thus all the literals in
p' are in p, that is, p < p’. So p <t as desired.

Now assume p is picked up by the scheme from a row where ¢ is assigned a wu.
Then again, there is a p/, join irreducible, with p’ < ¢ and o (p) = w. Suppose p’
contains a literal not contained in p. Then this is a literal assigned 0 by v, which
would imply v (p') = 0—a contradiction. So p < p’ <t as desired. m

Table 6 shows an example for two rows of a table with n variables. Notice that in
the first row shown, no literal is picked up for x5 and in the second row shown, both
literals are picked up for .

T1 Ty X3 Ty ‘ t ‘ pick up

1 w 0 -+ 011 Ty NTEA - AN

1w 0 -+ 1 lu|zg Az AhbANTEA--- Nz,
Table 6:

Table 7 gives an example for a table with 2 variables.

r yl(@VvyA@Vvy)A@ Vy) pick up

0 O 0

0 1 0

10 1 x Ny

1 1 0

u U u AN ANyANy

u 0 u AN NY

u 1 u AN ANy

0 u u T ANyNy

1 u u TANYNY
Table 7:

After discarding redundant conjunctions you get the normal form
(@Vy) A (@VY)ANEVY) =@ AyAyY) V(@A Ay)V(zAy)

You follow a dual procedure (reverse the roles of 0 and 1 and reverse the roles of A
and V) to obtain Kleene-conjunctive normal forms.
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Also the same can be done for interval-valued fuzzy sets. There, the algebra of
truth values DD has the truth values shown in Table 8.

The disjunctive normal forms for the fuzzy case are gotten from a truth table as
follows:

e For those rows that have value 1 in the column of the expression to be put into
disjunctive normal form, and truth values 0 or 1 and possibly u or v (but not
both) for the variables, form the conjunction of the variables with truth value
equal to 1 with the negations of the variables with truth value equal to 0 (and
leave out variables with truth value equal to u or v). If the row has values all
u’s (or all v’s) pick up p = 1.

e For those rows that have value 1 in the column of the expression to be put
into disjunctive normal form, and both u and v occur as truth values for the
variables, form two conjunctions: one using the variables with truth value equal
to 1 and the negations of the variables with truth value equal to 0 and using both
the variables and the negated variables of the variables with truth value equal
to u, the other using the variables with truth value equal to 1 and the negations
of the variables with truth value equal to 0 and using both the variables and
the negated variables of the variables with truth value equal to v.

e For those rows that have value u in the column of the expression to be put into
disjunctive normal form, form the conjunction using the variables with truth
value equal to 1, the negations of the variables with truth value equal to 0, and
using both the variables and the negated variables of the variables with truth
value equal to u (and leave out variables with truth value equal to v).

e For those rows that have value v in the column of the expression to be put into
disjunctive normal form, form the conjunction using the variables with truth
value equal to 1, the negations of the variables with truth value equal to 0, and
using both the variables and the negated variables of the variables with truth
value equal to v (and leave out variables with truth value equal to u).
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The irredundant De Morgan-disjunctive normal form for the expression is then ob-
tained by discarding redundant conjunctions—that is, any conjunction that contains
the same, and possibly more, literals as another conjunction in the term.

Table 9 gives some sample rows with four variables.

T1 Ty X3 T4 ‘ t ‘ pick up

1 w 0 0|1 1 A\ Xy A\ Ty

0 u 1 v |u Ty N xo AN ThH A X3

1 v 0 w|l|zpAzgAahbAxy and o9 Axh Axg Azl

Table 9:

Theorem 19 The scheme described above yields De Morgan-disjunctive normal forms.

Proof. Let ¢t be a formula, and let p be a join irreducible with p < ¢t. We need to
show that the scheme either picks up p or some join irreducible p’ with p < p’ <t.

Case 1 p contains each variable at most once.

In this case consider the row in which each variable occurring in p (not negated)
is assigned 1, each variable occurring negated is assigned 0 and each variable
not occurring is assigned u. This valuation clearly sends p to 1, and since p < 't
it also sends ¢ to 1. Further, the scheme applied to this row now picks up p.

Case 2 p contains each variable at least once.

In this case, consider the row in which each variable only occurring unnegated
is assigned 1, each variable occurring only negated is assigned 0, each variable
occurring twice is assigned w. In this row, p is assigned value u, and so t is
assigned either v or 1. If ¢ is assigned u, the scheme picks up p. If ¢ is assigned
1, the scheme will pick up a p’ that is join irreducible with p < p’ <.

Case 3 p contains at least one variable together with its negation, and p does not
contain a literal for at least one variable.

In this case, consider the row in which each variable only occurring unnegated
is assigned 1, each variable occurring only negated is assigned 0, each variable
occurring twice is assigned u and each variable not occurring is assigned v. In
this row, p is assigned value u, and so t is assigned either v or 1. If  is assigned
u, the scheme picks up p. If ¢ is assigned v, the scheme picks up both p and a
p’ that is join irreducible and assigned the value v.

Therefore the scheme picks up all the maximal join irreducibles below ¢ (and very
likely some that are not maximal).

For the converse, let p be a join irreducible that is picked up by the scheme. We
want to show that p < t. Now ¢ is the join of join irreducibles that lie below t, say
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t=p1VpaV---Vp, with each p; join irreducible. If ¢ is assigned one of the values 0,
u or v, then at least one of the join irreducibles below ¢ is assigned the same value as
t. If t is assigned the value 1, then either one of the join irreducibles below t is also
assigned 1 or there exist two join irreducibles below ¢, one assigned the value v and
the other assigned the value v.

Case 1 Assume p is picked up by the scheme from a row where t is assigned wu.
Then there is a join irreducible p’ < ¢ with the valuation of p’ equal to wu.
Suppose p’' contains a literal not contained in p. Then this is a literal assigned
v by the valuation for that row, which would imply the valuation of p’ is 0—a
contradiction. So p < p’ <t as desired. If p is picked up by the scheme from a
row where t is assigned a v, the argument is the same (with the roles of v and
v reversed).

Case 2 Assume p is picked up by the scheme from a row where ¢ is assigned 1 and
assume there is some p’ join irreducible with p’ < t and the value assigned to p’
from the values in this row is 1. Now if p’ contains a literal not contained in p,
this literal must be assigned value u or v. But this contradicts the assumption
that p’ has value 1. Thus p < p’ <t as desired.

Case 3 Finally, assume p is picked up by the scheme from a row where ¢ is assigned
1 and assume that every join irreducible p’ < t has value less than 1. Then
there are join irreducibles p’ and p” below ¢ with values u and v, respectively.
If p were assigned the value 1, the row would not contain both values u and
v and there could not be join irreducibles p’ and p” below ¢ with values u and
v, respectively. Thus p is assigned the value u or v. Suppose p is assigned the
value u. If p’ contains a literal not in p, this literal would have to be assigned
the value v, contradicting the fact that p’ is assigned the value u. Thus in this
case, p < p’ < t. Similarly, if p is assigned the value v, p < p” <t. Sop <t as
desired.

Therefore all the join irreducibles picked up by the scheme lie below ¢. m

Table 10 is an example for a table with 2 variables. After discarding redundant
conjunctions you get the normal form

@VyYAN(@VY)AE VY)=(@A)V(@EAY)V(yAY)

Checking this normal form in Table 11 verifies this equality:

6 The two variable case

As stated, the three propositional logics above are finite, but get large very quickly
as n increases. For the Boolean case, the algebra has 22" elements. However, for the
Boolean case and the Kleene case, the algebras can be examined by hand for n < 2.
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7
1 aVda
/ AN / AN
a a a a'
AN /! AN /
0 aAdad
7
0
Boolean case forn =1 Kleene case for n =1

The case n = 1 is not very challenging. In the Boolean case with P = {a}, it is
a four-element lattice, and in the Kleene case a six-element lattice. For n = 2, the
Boolean logic is the Boolean algebra with 16 elements, and in the Kleene case, the
logic has 84 elements. We will examine those algebras explicitly.!

The Boolean propositional logic on two variables is pretty easy to figure out. Let
the variables be a and b. The set of join irreducibles is {a Ab, a AV, a’ Ab,a’ AD'}. This
is an anti-chain—that is, the elements are pairwise incomparable, and every element
in Lo is uniquely the join of a subset of this four element set. The logic Ly has 16
elements. This lattice is pictured in Figure 1.

# = (x AYIV & AY)
w=(xA Ay )vE AY)

Figure 1: Boolean logic with two variables

The elements of the logic Ly are listed in Table 12 in three forms, the short,
disjunctive normal, and conjunctive normal forms.

'For n = 2 the enumeration in the Kleene case was done in [16] and [2]. For n = 3, there are
43918 truth tables [10, 11, 3] and for n = 4, there are 160,297,985,276 [4, 5.
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Short form | Boolean disjunctive normal form Boolean conjunctive normal form
1 (aNb)V (' AND)V (anb') V (a' AY) 1
a (@Nb)V (aND) (@aVb)A(aVl)
b (@aNb)V (aND) (aVb)A(a'VD)
a (@' ANb)V (d ND) (aVb)A(aVD)
b (aNb)V (a A (aVU)N(ad V)
aNb aNb (@aVbh)A(aVV)A(a VD)
ant anNl (aVbh)A(aV)A(d V)
a Ab a Nb (@Vb)A(adVb)A(a V)
a Ab a N (aVUV)A(d V)N (d VD)
aVb (@nb)V (aAND)V(a AND) aVb
aVy (@Ab)V (aND)V(a ND) aVv
a' Vb (@Ab)V (a ANV)V (' AND) a' Vb
a vy (@ ANb)V (aNV)V (a ANV a v
a<b (@anb)V (a AY) (aVUV)A(aVb)
asb (aNV)V(a ND) (aVb)A(a V)
0 0 (aVb)A(a'VO)A(aVI )N (a' V')
Table 12:

The key to getting disjunctive normal forms was to figure out what the join
irreducibles are. Table 13 lists them for the De Morgan, or interval-valued case, and
for the Kleene, or fuzzy case. The 84 element Kleene counterpart is a bit too big
to depict here. However, its join irreducible elements, shown in Figure 2, form a
subposet of L.

This set of join irreducibles is a partially ordered set, getting its partial order from
that of Lx. This partial order makes the join irreducibles into a lattice, as pictured
in Figure 1. But it is not a sublattice of L.

Table 14 lists the number of elements in the Kleene two-variable propositional logic
L3 that collapse to each of the elements in the Boolean two-variable propositional
logic Ly. This count shows that there are 84 elements in Lg. Each of the sets of 4
forms a diamond shaped sublattice (not, of course, a sub-bounded lattice). They are
not subalgebras, as they are not closed under negation. The 17 element sets form a 16
element lattice isomorphic to Ly as a lattice, with an extra top (or bottom) element.

There is another pertinent fact about Kleene propositional logic. In the two-
variable case, it has 84 elements, each one being a function {0,u,1} x {0,u,1} —
{0,u,1}. But there are 3° such functions, so not every one of them is represented by
an element of the logic. Thus 3 is not primal. The two-element Boolean algebra is,
and D, like 3, is not. One point about this: In fuzzy theory, sometimes implication
a — b is taken to be sup{c : a A ¢ < b}. If we do this in fuzzy propositional logic,
there is no formula for it in terms of a and b. This function is not represented by an
element of the logic, reflecting its non-primality.
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Kleene (classical fuzzy logic)

De Morgan (interval-valued fuzzy logic)

1
a
b

a/

bl
alNb
a Ab
aNl
a AN
aNa ND
aNa N
aNbAV
a ANbAY
aNad NODAY

1
a
b

al

b/
alNb
a Ab
aNl
a ANb

aNd ND
aNd ANV
aNbAV
a ANbAY

aNd NDAY

aAla

bAY

Table 13: Join Irreducibles
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Boolean short form # Kleene Boolean short form # Kleene

elements elements
1 17 0 17
VY 4 x A
xVy 4 2 4
' Vy 4 y 4
vy 4 Y 4
TAY 4 Ay V@ AY) |1
' Ay 4
ANy 4

TOTAL 84
Table 14:




x4 IF % "L".]"‘F

Figure 2: Join irreducibles in Kleene two-variable logic

7 Generalizations of Boolean terms

Turksen has written several papers concerned with normal forms in two variables
[18, 19, 20, 21, 22, 23, 24, 25]. He uses these to discover alternative fuzzy generaliza-
tions of Boolean terms. We begin with an example of his having to do with the logical
connective “AND”. In Boolean logic, A “AND” B has AA B as its propositional coun-
terpart, where A is the usual Boolean connective. What is the proper propositional
counterpart in fuzzy logic? In Boolean propositional logic, we are operating in the
Boolean algebra Lo, and in fuzzy propositional logic in the algebra Ly, where the
algebra of truth values is I, the unit interval with the operations A = min, V = max,
2’ =1 — xz, and the usual constants 0 and 1. Turksen argues that in fuzzy logic, the
“meta-linguistic” connective “AND” should not necessarily become simply A A B in
the Kleene algebra ;. There is merit to this skepticism. Consider the two variable
case, with the variables being A and B, which is the only case Turksen considers. In
the natural homomorphism
]L]I — ]Lz
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there are exactly four elements that go onto A A B in Ly, namely the elements listed
just below, all considered as elements of Lj.

ANB
AN(A'V B)
BA(AV B')

(AVB)AN(AV B)AN(A'V B)

One could argue that any one of these is a reasonable candidate for the fuzzy counter-
part to the Boolean “AND”. They all collapse to the same element in Boolean logic.
The elements in the same row in Table 12 are logically equivalent in the Boolean case.
So perhaps there is some justifying to do to settle on A A B as the natural proposi-
tional counterpart of A “AND” B in fuzzy logic. Or perhaps each has its merits, or
demerits as a candidate for “AND” in the fuzzy realm. This point of view is more
convincing if one considers the notion of “IMPLIES”. In Boolean logic, it is usually
taken to be A’V B, namely “material implication.” Again, in the homomorphism
above, the four elements

A’V B
BV (A'AB)
A"V (ANB)
(ANB)V (A'AB")V (A A B)

of I; all map to A’V B in LLy. So any one of these is a potential candidate to be
the propositional counterpart of the linguistic connective “IMPLIES” in fuzzy logic.
Indeed, in fuzzy logic, the form A’V (A A B) is sometimes used for implication. It is
called Q-implication, and is used in other logics as well [15].

One could make these considerations for all sixteen elements in the Boolean alge-
bra IL,. But there are difficulties. In this two variable case, Ly has 84 elements, and
17 of them go onto 1 in Ly, giving 17 candidates in the fuzzy case for what Turksen
calls “complete affirmation.” Turksen takes another tack. He observes in the two
variable case that for any term ¢ € T, the Boolean disjunctive normal Dg (¢) for ¢ is
contained in its conjunctive normal form Cg (t) when viewed as elements of L. This
is one of the several inequalities we stated above (see Section 4), and which holds
for any finite number of variables. Turksen proposes that each one of the sixteen
“linguistic combinations” X (the sixteen elements X of L), be represented by the
interval (Dp (X), Cg (X)). This interval actually contains all the elements in L that
go onto Dg (X) in Ly, so if one is to choose an interval to represent the corresponding
linguistic connective, this is the appropriate one. These sixteen elements X are listed
in their short form, Boolean disjunctive, and Boolean conjunctive normal forms in
Table 12. For each such X, and for each evaluation, that is, each assignment of the
variables A and B to elements of the set of truth values [0, 1], this gives a subinterval
of [0, 1].
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Turksen’s proof that Dg (X) < Cg(X) in Ly is on a case by case basis, for the
sixteen cases. Our proof appeals to a basic general fact about the various normal
forms, and gets the result all at once, not only for all sixteen cases, but for any
number of variables. It is not easily seen how Turksen’s method of proof would
extend to the case of an arbitrary finite number of variables. A proof similar to ours
was given in [26].

Here are some examples for “AND”. Let A = .3 and B = 4. Now AAB = .3 and
Turksen’s interval is (.3A .4, (3V.4)A((1 —.3)V.A)A(3V(1—.4)) = (.3,.4). Turksen
objects to taking A “AND” B to be AAB = .3 because it does not reflect “any effect”
of B ([18], page 204). But of course it does. The minimum of two numbers depends
on both those numbers. If we take A = .3 and B = .8, then the interval is (.3, .3).

There are some basic objections to taking the intervals Turksen proposes. One
could argue that A “AND” B should be increasing in both variables. Now

(ANB,(AVB)AN(AV B')A(A'V B))

does not necessarily give a larger interval with increased A and B, as easy examples
show. Further, it is not clear how these intervals should be manipulated. Are they
to be manipulated, and if so, how, exactly? What is (A“AND” B) “OR” A?

What has been done is, in the two variable case, to associate with each element of
IL; a pair of elements of IL;. This gets sixteen elements of (LH)[Z} . This image gets the
structure of a lattice from the partial order on LLj, and in fact is a Boolean algebra
with its negation inherited from (]L]I)m . This Boolean algebra is isomorphic to La.
One could work in this algebra, but it is Boolean, and not appropriate for some fuzzy
considerations.

For fuzzy considerations we consider the following development more appropriate.
We are dealing with propositional logic with truth values in the unit interval [0, 1]
with the usual operations. In the two variable case, this gives us the 84 element
propositional logic ;. The sixteen “meta-linguistic” expressions Turksen refers to are
the sixteen elements of Ly, and he starts there. The proper place to start is in ;. Now
there are 84 “meta-linguistic” expressions to consider, providing ample opportunity
to philosophize. For example, there are seventeen elements that correspond to 1
in Lo, so these seventeen are all different elements that correspond to “complete
affirmation”. Each element of IL; represents a fuzzy proposition, and an evaluation
of the two variables gives a truth evaluation of that proposition. Limiting oneself to
Turksen’s sixteen intervals loses much of the two variable fuzzy propositional logic.
And the restriction to the two variable case causes pause.

If it is felt that there is not enough fuzziness in ordinary fuzzy logic, one should
consider interval-valued fuzzy logic. There the truth values are the intervals [0, 1] =
{(a,b) : a,b € [0,1], a < b}, with the operations we have indicated above. So an
interval-valued fuzzy set is a mapping X — [0, 1], This introduces another level of
fuzziness at the very beginning: a truth value is not a number between 0 and 1, but
an interval. The logical theory is straightforward, yielding the De Morgan algebra
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Lz = Lp with normal forms and truth tables just as we have it in the Boolean
or Kleene case. This algebra in the two variable case has 168 elements. This De
Morgan algebra is not a Kleene algebra as is Lj, in particular, it does not satisfy
x ANz’ < yVy, so has somewhat different algebraic properties. However, much of
t-norm theory carries over from I to 12 [7].

8 Fuzzy logic with t-norms and t-conorms

The operations V and A on [0, 1] are sometimes replaced by a t-norm A and a t-
conorm Y/, and the involution 1 — 2 by an involution 1 on [0, 1] with respect to which
the t-norm and t-conorm are dual. But norms and conorms are defined using the
order relation on [0, 1], or equivalently, the lattice operations V and A on [0, 1]. Thus,
as an algebra this setup is (I, 57, A, n) = ([0,1],V, A, v, 4, 1n,0,1), an algebra with
arity (2,2,2,2,1,0,0). Thus to develop a logic based on norms and conorms, one has
this as its algebra of truth values. We know a little bit here: For strict t-norms, one
may as well take A to be multiplication, and then 7 is whatever n forces it to be.
Such a setup is called a De Morgan triple in fuzzy theory. Fixing the t-norm to be
multiplication, two negations n and 3 give isomorphic triple systems if and only if
n(z) = (B(z")"" for some positive real number 7. In fact, one may as well require
that the negations fix 1/2, in which case multiplication and two negations 7 and
give isomorphic De Morgan triples if and only if n = 8. And two De Morgan triples
with strict t-norms give the same logic if and only if they are isomorphic. So we
get distinct propositional logics for distinct negations that fix 1/2. This is standard
t-norm theory [9]. Properties of the logics whose algebras of truth values are a De
Morgan triple will be the subject of a future paper.
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