
Stone Algebra Extensions with Bounded Dense Set�

Mai Gehrke, Carol Walker, and Elbert Walker
Department of Mathematical Sciences

New Mexico State University
Las Cruces, New Mexico 88003

Abstract

Stone algebras have been characterized by Chen and Grätzer in terms of
triples (B;D;'), whereD is a distributive lattice with 1; B is a Boolean algebra,
and ' is a bounded lattice homomorphism from B into the lattice of �lters of
D: If D is bounded, the construction of these characterizing triples is much
simpler, since the homomorphism ' can be replaced by one from B into D
itself. The triple construction leads to natural embeddings of a Stone algebra
into ones with bounded dense set. These embeddings correspond to a complete
sublattice of the distributive lattice of lattice congruences of S. In addition,
the largest embedding is a re�ector to the subcategory of Stone algebras with
bounded dense sets and morphisms preserving the zero of the dense set.

1 Introduction

Stone algebras �rst gained interest when they were characterized by Grätzer and
Schmidt as the solution of a problem of Stone: they are the bounded distributive
lattices for which the set of prime ideals satis�es the property that each prime ideal
contains a unique minimal prime ideal [9]. These algebras were studied quite ex-
tensively in the sixties and early seventies. Recently, Stone algebras with bounded
dense sets have arisen in various applications, including conditional event algebras
and the study of rough sets and this has led us to investigate this special class of
Stone algebras.
One of the main tools for understanding the structure of a Stone algebra was

provided by Chen and Grätzer�s triple construction [3, 4]. A Stone algebra S is
determined as soon as we know its center, its dense set, and how the two sit inside
S. Chen and Grätzer showed that this information is carried by a triple (B;D; ');
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where D is a distributive lattice with 1; B is a Boolean algebra, and ' is a bounded
lattice homomorphism from B into the lattice of �lters of D: Such a triple gives rise
to a Stone algebra whose center is B and whose dense set is D: Conversely, given a
Stone algebra with dense set D and center B, there is a natural homomorphism from
B into the lattice of �lters of D, and this triple yields a Stone algebra isomorphic
to the original one. Katri¼nák and others [10, 11, 12, 13, 14, 19, 20] have simpli�ed
this construction and generalized it in various directions. In this paper we use a
slight variation of Katri¼nák�s triple construction that permits a more straightforward
construction of the corresponding Stone algebra.
If a Stone algebra has a bounded dense set, as the ones that arise in recent

applications do, the triple described above can be replaced by a triple (B;D; '); where
D is a bounded distributive lattice, B is a Boolean algebra, and ' is a bounded lattice
homomorphism from B into D itself, as observed by Katri¼nák in [10] and studied
further by Köhler in [15]. This major simpli�cation of the triple construction led
us to the study of embeddings of a Stone algebra into Stone algebras with bounded
dense set, which is the primary subject of this paper. We de�ne a bounded dense
extension of a Stone algebra S to be a Stone algebra monic 
 : S ! T , where the
dense set of T has a smallest element and T is generated as a Stone algebra by the
image of S together with the smallest element of the dense set of T . We show that
the relation de�ned by T1 � T2 if the map S ! T1 factors through the map S ! T2
orders the set of isomorphism classes of bounded dense extensions of a Stone algebra
S. There is a natural order embedding of this poset into the lattice of congruences
of S viewed as a bounded lattice. The image of this embedding is a complete and
bounded sublattice of the congruence lattice.
The association of a Stone algebra S with its largest bounded dense extension

leads to a functor from the category of Stone algebras to the subcategory consisting
of Stone algebras with bounded dense set together with those Stone algebra maps
that preserve the zero of the dense set which is a re�ector. Since this is not a full
subcategory, the re�ector is not idempotent.

2 Stone Algebras and the Category of Triples

An element x� in a bounded distributive lattice is the pseudocomplement of an
element x if x^y = 0 exactly when y � x�. A Stone algebra is a bounded distributive
lattice S in which every element has a pseudocomplement and x� _ x�� = 1 for
all elements x. An element x of S is complemented if x _ x� = 1: The center of
S is the largest Boolean sublattice B(S) of S. It consists of the complemented
elements of S, or equivalently in the case of a Stone algebra, is the image of S under
pseudocomplementation. The dense set of S is the set D(S) of elements of S whose
pseudocomplement is 0. The dense set of S is a �lter (or dual ideal) of S, and in
particular, a distributive sublattice with 1. For any distributive lattice L, F(L) will
denote its lattice of �lters. If L has a 1, then F(L) is a bounded lattice.
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For a Boolean algebra B and a distributive lattice D with 1, we take a triple
(B;D; ') to be a bounded homomorphism ' : B ! F(D)@ from the Boolean algebra
B to F(D)@, the dual lattice of the �lter lattice of D. The dual of a lattice in this
sense is the lattice obtained by reversing the order, thus interchanging the roles of
the meet and join operations. This slight change in the de�nition of a triple simpli�es
the construction of the corresponding Stone algebra. First we get the Stone algebra

U = f(F; b) : F � '(b)g � F(D)@ �B

where U is viewed as a sublattice of F(D)@ � B, and pseudo-complementation is
given by (F; b)� = ('(b�); b�). The Stone algebra associated with the triple, is the
subalgebra of U given by

S(B;D; ') = f("d _ '(b); b) : b 2 B; d 2 Dg,
where "d is the principal �lter of D generated by d. This Stone algebra has dense set
f("d; 1) : d 2 D)g isomorphic to D, and center f('(b); b) : b 2 Bg isomorphic to B.
Let S be a Stone algebra with dense set D and center B, and let ' be the map

B ! F(D) de�ned by '(b) = "b \D, where "b is the principal �lter of S generated
by b. Then ' is an anti-homomorphism, in particular,

'(b _ c) = "(b _ c) \D = (("b) \D) ^ (("c) \D) = '(b) ^ '(c);
'(b ^ c) = "(b ^ c) \D = (("b) \D) _ (("c) \D) = '(b) _ '(c):

Now the associated Stone algebra S(B;D; ') is isomorphic to S by the map
S(B;D; ') �! S : ("d _ '(b); b) 7�! d ^ b

as shown in [3].
The following fundamental property of the lattice of �lters is stated in [3], (2.12).

Lemma 1 (Principal Filter Lemma) If D is a distributive lattice with 1, then for any
�lter F in the center of the lattice F(D) and any d 2 D, the �lter "d\F is principal.
This lemma plays a key role in the study of triples in the following way. If

' : B ! F(D)@ is a bounded homomorphism, with B a Boolean algebra, then '(b)
is in the center of F(D)@ for all b 2 B so in particular, "d \ '(b) is principal for all
d 2 D, b 2 B.
The triple construction gives a one-to-one correspondence between (isomorphism

classes) of Stone algebras and triples. This correspondence yields a categorical equiv-
alence with a morphism of triples f : (B;D; ') ! (C;E;  ) de�ned to be a pair
f = (g; h), where g : B ! C is a Boolean algebra homomorphism and h : D ! E is
a distributive lattice with 1 homomorphism, with the property that for each b 2 B,
 (g(b)) � h('(b)). The homomorphism h : D ! E induces the map

F(h) : F(D)@ ! F(E)@ : F 7�! "fh(d) : d 2 Fg:
Note that F(h) is a homomorphism and F(h)("d) = "h(d). With this notation, the
morphism (g; h) gives the diagram
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C F(E)@-
 

B F(D)@-'

?

g

?

F(h)

where  (g(b)) � F(h)('(b)) for all b 2 B. The condition that (g; h) be a morphism
of triples can be stated in any of the following three equivalent ways. The equivalence
of 1. and 2. below is comment (5.9) in [3].

Lemma 2 The following are equivalent for a morphism (g; h).

1. F(h)'(b) =  g(b) \ F(h)(D) for all b 2 B:

2. F(h)'(b) �  g(b) for all b 2 B:

3.  g(b) \ "h(d) = F(h)("d \ '(b)) for all b 2 B, d 2 D:

The diagram commutes exactly when F(h)(D) = E; in other words, when F(h)
is a bounded homomorphism. In this situation, we call f = (g; h) a strong homomor-
phism of Stone algebras.
The following theorem of Chen and Grätzer (Theorem 4 in [3]) allows us to char-

acterize subalgebras of Stone algebras in terms of subobjects of the center and the
dense set.

Theorem 3 Let S be a Stone algebra with dense set D and center B. Let E be a
sublattice of the lattice D with 1 and C a subalgebra of the Boolean algebra B, and
call the pair (C;E) admissible if e_c 2 E for all e 2 E; c 2 C. There is a one-to-one
correspondence between admissible pairs (C;E) and Stone subalgebras of S. The pair
(C;E) corresponds to the subalgebra fe ^ c : e 2 E; c 2 Cg, which has dense set E
and center C.

For example, given any sublattice E of D with 1, the pair (f0; 1g; E) gives rise to
the Stone subalgebra E [ f0g of S. Also, each subalgebra C of B gives rise to the
Stone subalgebra fx 2 S : x� 2 Cg of S determined by the pair (C;D).

3 Bounded Dense Extensions of Stone Algebras

Many Stone algebras, including all �nite ones, have bounded dense set. A class of
Stone algebras with bounded dense set which has recently been the object of some
attention arises from Boolean algebras. If B is any Boolean algebra,

B[2] = f(x; y) : x; y 2 B; x � yg
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with component-wise operations is a Stone algebra with dense set

D = f(x; 1) : x 2 Bg;

which is bounded with bottom and top elements (0; 1) and (1; 1), respectively. The
Stone algebras B[2] have arisen recently in various applications, including conditional
event algebras ([5, 7, 21]), and the study of rough sets ([6, 17, 18]). Stone algebras
with bounded dense sets are closed under many constructions, such as direct products
and passing from a Stone algebra S to S[2] = f(a; b) : a; b 2 S; a � bg.
For the class of Stone algebras with bounded dense set, the triple construction

becomes much simpler. The image of the homomorphism ' from B(S) to the lat-
tice F(D(S))@ is now entirely contained in the sublattice of principal �lters, by the
Principal Filter Lemma. Thus the map ' may be considered as a bounded lat-
tice homomorphism from B(S) to D(S) itself. In other words, the natural map
Map(B;D) ! Map(B;F(D)@) : � ! "� is a bijection, where Map(B;D) and
Map(B;F(D)@) are the sets of bounded distributive lattice maps.

De�nition 4 A bounded triple is a triple (B;D; ') where B is a Boolean algebra, D
is a bounded distributive lattice, and ' : B ! D is a bounded lattice homomorphism.
The Stone algebra arising from a bounded triple (B;D; ') is

Sb(B;D; ') = f(d; b) : d 2 D; b 2 B; d � '(b)g

considered as a sublattice ofD�B with pseudocomplement given by (d; b)� = ('(b�); b�).

Note that the map b 7�! ('(b); b) is an isomorphism between B and the center of
Sb(B;D; '); and D ! f(d; 1) : d 2 Dg : d! (d; 1) is an isomorphism between D and
the dense set of Sb(B;D; '): If S is a Stone algebra with center B and dense set D,
having a least dense element 0D, then the inverse of the isomorphism Sb(B;D; ')! S
is the map x 7�! (x _ 0D; x��).

Example 5 Given an arbitrary triple (B;D; '), then ' : B ! F(D)@ is a bounded
homomorphism, and thus (B;F(D)@; ') is a bounded triple. This gives rise to the
Stone algebra

U = Sb(B;F(D)@; ') = f(F; b) : F � '(b)g � F(D)@ �B

which naturally contains

S = S(B;D; ') = f("d _ '(b); b) : b 2 B; d 2 Dg.

Thus any Stone algebra is naturally embedded in a Stone algebra with bounded dense
set.

5



Lemma 6 Let S = (B;D; ') be a triple. The pair (C;E), where

E = f("d _ '(b); 1) : d 2 D; b 2 Bg
C = f('(b); b) : b 2 Bg

is an admissible pair, and the subalgebra S of U determined by this pair is the smallest
subalgebra of U = Sb(B;F(D)@; ') containing S with bounded dense set. Moreover,

S = f("d _ '(b1); b2) : d 2 D; b1; b2 2 B; b1 � b2g:

Proof. It is easy to see that C �= B is a Boolean algebra and that E is a bounded
sublattice of D(U) = f(F; 1) : F 2 F(D)g. For (C;E) to be an admissible pair in
the sense of Theorem 3, e_ c must belong to E for e 2 E and c 2 C. Thus for d 2 D
and b1; b2 2 B the element ("d _ '(b1); 1) _ ('(b2); b2) must be contained in E. But

("d _ '(b1); 1) _ ('(b2); b2) = ((("d _ '(b1)) \ '(b2); 1 _ b2)
= ((("d \ '(b2)) _ '(b1 _ b2); 1):

By the Principal Filter Lemma "d^'(b2) is principal, so ((("d ^ '(b2))_'(b1^b2); 1)
is an element of E. Also note that the dense set f("d; 1) : d 2 Dg of S is contained
in E. Thus the subalgebra determined by (C;E) is a Stone algebra with bounded
dense set containing S.
To see that (C;E) is the smallest such admissible pair, note that the dense set

of any such pair must contain f("d; 1) : d 2 Dg and a lower bound of this set. If
(F; 1) 2 D(U) is a lower bound for f("d; 1) : d 2 Dg then F � "d for all d 2 D. This
implies F = D. Thus the dense set of any such pair must contain all elements of the
form (

D; 1) _ ('(b); b) = (D \ '(b); 1 _ b) = ('(b); 1):
Since E is a sublattice it is closed under meets, so ("d; 1) ^ ('(b); 1) = ("d \ '(b); 1)
is in E.
By Theorem 3, the Stone subalgebra S of U determined by the pair (C;E) is

fe ^ c : e 2 E; c 2 Cg : Thus

S = f("d _ '(a); 1) ^ ('(b); b) : d 2 D; a; b 2 Bg
= f("d _ '(a ^ b); b) : d 2 D; a; b 2 Bg
= f("d _ '(b1); b2) : d 2 D; b1; b2 2 B; b1 � b2g: �

Given a Stone algebra S, we have embedded it into the Stone algebra S whose
dense set is bounded. Note that if D is already bounded, S = S since in this case
each '(b) is principal and E = D.
In the category of Stone algebras, the assignment S 7�! S cannot be extended to

a functor with the property that f extends f , since any such extension to morphisms
does not preserve composition. To see this, consider the following example.
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Example 7 Let S, T , and U be the chains S =
�
1
n
: n 2 N

	
[f0g, T =

�
1
n
: n 2 N

	
[ft; 0g,

and U =
�
1
n
: n 2 N

	
[fu1; u2; 0g, as illustrated in the diagram that follows. Let f be

the bounded homomorphism from S to T that is the identity on
�
1
n
: n 2 N

	
. Let gi

be the bounded homomorphism from T to U that is the identity on
�
1
n
: n 2 N

	
and

takes t to ui for i = 1; 2. Then g1 � f = g2 � f .

Applying the operator to S gives the lattice S �= T . If the assignment were extended
to the morphisms, we would have (g1 � f) = (g2 � f). On the other hand, the only
possibility for f : S ! T �= T extending f is the isomorphism of S and T . Since both
T and U are already bounded, we also have that gi = gi, i = 1; 2. So we have

S �= T
g1! U and S �= T

g2! U

and g1 � f = g2 � f if and only if g1 = g2, which is clearly not the case.

Given a Stone algebra S = S(B;D; '), S was de�ned to be the smallest subalgebra
of F (D)@ � B that has bounded dense set and contains S. We may ask whether S
is, in some sense, the smallest Stone algebra with bounded dense set containing S.
Before we can answer this question we need to explore a larger class of extensions,
the bounded dense extensions of a Stone algebra S.

De�nition 8 A bounded dense extension of a Stone algebra S is a Stone algebra T
and a Stone algebra monic 
 : S ! T satisfying

1. The dense set E of T has a smallest element.

2. The algebra T is generated as a Stone algebra by 
(S) [ f0Eg.
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Theorem 9 Let 
 : S ! T be a Stone algebra monomorphism and suppose E =
D(T ) is bounded. Let B = B(S), D = D(S) and C = B(T ): Then 
 : S ! T is a
bounded dense extension if and only if

1. The restriction 
jB is an isomorphism of Boolean algebras B �= C, and

2. E = f
(d) ^ (c _ 0E) : d 2 D; c 2 Cg.

Proof. Assume 
jB is an isomorphism of Boolean algebras B �= C and E =
f
(d) ^ (c _ 0E) : d 2 D; c 2 Cg. We are given that 
 is a Stone algebra monic and
that the dense set E of T has a smallest element. But T = fe ^ c : e 2 E; c 2 Cg so
we have

T = f(
(d) ^ (
(b1) _ 0E)) ^ 
(b2) : d 2 D; b1; b2 2 Bg
is generated as a Stone algebra by 
(S) and 0E.
Now assume 
 : S ! T is a bounded dense extension, so that T is generated as a

Stone algebra by 
(S) and 0E. Let A = 
 (B) and

F = f
 (d) ^ (
 (b) _ 0E) : d 2 D; b 2 Bg :

ThenA � C. It is easy to show that (A;F ) is an admissible pair as de�ned in Theorem
3, and that both 
(S) and 0E are contained in the subalgebra of T generated by the
pair (A;F ). It then follows from Theorem 3 and the de�nition of bounded dense
extension that

C = A = 
 (B) �= B and

E = F = f
(d) ^ (c _ 0E) : d 2 D; c 2 Cg

as desired. �

Example 10 Let S = S (B;D; '). Then S = f("d _ '(b1); b2) : d 2 D; b1; b2 2
B; b1 � b2g with the map 
 : S ! S : ("d _ '(b); b) 7�! ("d _ '(b); b) is a
bounded dense extension. Certainly 
 is a monomorphism which restricts to an iso-
morphism between the centers. The dense set E = f("d _ '(b); 1) : d 2 D; b 2 Bg of
S is bounded, having smallest element ('(0); 1) = (D; 1). Also

("d _ '(b); 1) = ("d; 1) ^ ('(b) \D; b _ 1)
= 
 (("d; 1)) ^ (('(b); b) _ (D; 1))

Example 11 Let S = S (B;D; '). Then S = Sb (B; S; i) with the map


 : S ! S : ("d _ '(b); b) 7�! (("d _ '(b); b); b)
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is a bounded dense extension. Clearly 
 is a monomorphism which restricts to an
isomorphism between the centers and D

�
S
�
�= S is bounded with smallest element

((D; 0) ; 1). An arbitrary element of D
�
S
�
is of the form

(("d _ '(b); b); 1) = 
 (("d; 1)) ^ ((('(b); b) ; b) _ ((D; 0) ; 1)) :

De�nition 12 Let 
i : S ! Ti be bounded dense extensions for i = 1; 2. Then
T1 � T2 if there exists a strong homomorphism of Stone algebras �21 : T2 ! T1 such
that �21 � 
2 = 
1, i.e. the diagram

S T1-

1


2

�
�
�
���

T2

?

�21

(1)

commutes and �21(0D(T2)) = 0D(T1).

We identify the two extensions when �21 is an isomorphism.

Theorem 13 Given a Stone algebra S, the set of all bounded dense extensions of S
is partially ordered by the relation �.

Proof. We may assume the center of Ti is B and that 
ijB is the identity. Let Ei =
D(Ti). To see that the relation is an order, note that for b 2 B, 
1 (b) = 
2 (b) = b so
�21jB is the identity on B. It is immediately clear that � is re�exive and transitive.
To prove antisymmetry we show that �21 is unique whenever it exists. Since every
element of Ei is of the form 
i (d)^ (b_0Ei) and since �21 is a strong homomorphism,
�21jE2 : E2 ! E1 by

�21 (
2 (d) ^ (b _ 0E2)) = �21
2 (d) ^ (�21(b) _ �21(0E2))
= 
1 (d) ^ (b _ 0E1) :

This completely determines �21. Thus for any two bounded dense extensions there is
at most one strong homomorphism �21 from T2 to T1.
Now suppose T1 � T2 and T2 � T1. Then �21 � �12 shows that T2 � T2. But

so does the identity map, so by uniqueness �21 � �12 is the identity on T2. Similarly
�12 � �21 is the identity on T1. Therefore �21 is an isomorphism and the extensions
are considered equal. �

In the next section we will show that S is the smallest bounded dense extension
of S in this partial order. However, the following theorem enables us to show that S
is not always a subalgebra of other bounded dense extensions of S.
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Theorem 14 Let S = S(B;C; ') be a Stone algebra, S = Sb(B;E; ') the smallest
subalgebra of S(B;F(D)@; ') containing S, and S = Sb(B; S; i) where i : B ! S is
inclusion. Then there is an embedding f : S ! S such that the diagram

S S
-







�
�
�
���

S

?

f

(2)

commutes if and only if the ideal

A = fb 2 B : '(b�) is principalg

of B is a principal ideal.

Proof. Suppose f : S ! S satis�es (2). Then

f(('(b); b)) = f(
('(b); b))

= 
(('(b); b))

= (('(b); b); b)

and

f(("d; 1)) = f(
(("d; 1)))
= 
(("d; 1))
= (("d; 1); 1)

Now f((D; 1)) = (s0; 1) for some s0 = ('(b0) _ "d0; b0) 2 S and (D; 1) � ("d; 1) for
all d 2 D so

f((D; 1)) = (s0; 1) � (("d; 1); 1)
for all d 2 D. It follows that '(b0)_"d0 = D and thus '(b�0) = '(b0)

� � "d0, implying
by the Principal Filter Lemma that '(b�0) is principal and hence that b0 2 A.
Now let b 2 A. We want to show that b � b0. Now b 2 A implies that '(b)_"d = D

for some d 2 D. Then

f((D; 1)) = f(('(b) _ "d; 1))
= f((D; 1) _ (('(b); b) ^ ("d; 1)))
= ((D; b0); 1) _ (('(b); b); b) ^ (("d; 1); 1)))
= ((D; b0 _ b); 1):

So b0 _ b = b0 and b � b0. On the other hand, if b � b0 then b� � b�0 so '(b
�) � '(b�0)

and again by he Principal Filter Lemma, '(b�) is principal and b 2 A. We have
shown that A = #b0.
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For the converse, let b0 2 B be the principal generator of the ideal A and de�ne
f : S ! S by the diagram

B S-
i

B E-'

?

idB

?

f

where
f("d _ '(b)) = ("d _ '(b); b _ b0):

First we show that f is well de�ned. Note that an alternate description of A is
A = fb 2 B : "d _ '(b) = D for some d 2 Dg. Suppose "d1 _ '(b1) = "d2 _ '(b2).
Then D = "d2 _ '(b2 ^ b�1) and thus b0 � b2 ^ b�1. Similarly, b0 � b1 ^ b�2. Since b0
contains the symmetric di¤erence of b1 and b2,

b0 _ b1 = b0 _ b2 = b0 _ (b1 ^ b2):

Thus f is well de�ned.
Now in order to show that (idB; f) is a bounded triple morphism, we need that

f'(b) � i(b). But f('(b)) = ('(b); b _ b0) � ('(b); b) = i(b).
Finally, we check that (2) commutes.

f(
("d _ '(b); b)) = f(("d _ '(b); b))
= f(("d; 1) ^ ('(b); b))
= f(("d; 1)) ^ (i(idB(b)); idB(b))
= (("d; 1); 1) ^ (('(b); b); b)
= (('(b) _ "d; b); b)
= 
("d _ '(b); b)): �

Example 15 Take B to be the Boolean algebra of all �nite and co�nite subsets of an
in�nite set X, take D to be the chain Nop, and de�ne ' : B ! D by ' (x) = D if x
is �nite, and ' (x) = f1g if x is in�nite. Clearly ' (b�) is principal if and only if b is
�nite, so the ideal A of the theorem is a non-principal ideal. Thus for S = S(B;D; ')
we have that S is not a subalgebra of S.

4 The Lattice of Bounded Dense Extensions

In the partial order on bounded dense extensions of S, we have shown that the one
determined by the bounded triple (B; S; i), where i is the inclusion of the center B in
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S, is the largest bounded dense extension of S. In this section we show that the set of
all bounded dense extensions of a Stone algebra S is a complete bounded distributive
lattice by identifying it with a sublattice of a lattice of congruences and we observe
that S is the smallest bounded dense extension of S.

Theorem 16 Let S be a Stone algebra with center B. For each lattice congruence �
of S such that the natural map D(S)! S=� is one-to-one, there is a bounded dense
extension 
� : S ! Sb(B; S=�; ��) where �� is the natural map B ! S=� : b 7�! [b]�
and 
�(s) = ([s]� ; s

��) for s 2 S. Moreover, every bounded dense extension can be
obtained in this way.

Proof. First recall that

S(B; S=�; ��) = f(e; b) : e 2 S=�; b 2 B; e � ��(b)g

and note that [s]� � [s��]� so 
� is well de�ned. Now for b 2 B, 
(b) = ([b]�; b��) =
([b]�; b) and it is clear that 
� is one-to-one on B. By hypothesis, 
� is one-to-one on
D. It follows that 
� is one-to-one.
For s 2 S, s = b ^ d for some b 2 B, d 2 D. As a sublattice of S(B; S=�; ��),

S=� = f([s]�; 1) : s 2 Sg. Then


�(d) ^ (b _ 0E) = f([d]�; 1) ^ (([b]�; b) _ ([0]�; 1))
= ([d]�; 1) ^ ([b]�; 1)
= ([d ^ b]�; 1) = ([s]�; 1):

It follows that

D (S(B; S=�; ��)) = S=� = f
�(d) ^ (b _ 0E) : d 2 D; b 2 Bg

and that S(B; S=�; ��) is a bounded dense extension of S.
For the converse, let 
 : S ! T = S(B;E;  ) be a bounded dense extension and

de�ne � to be the congruence f(x; y) : 
(x) _ 0E = 
(y) _ 0Eg. Then we have the
diagram


(B) E-
 

B S=�-�

?




?

�

where �([x]�) = 
(x) _ 0E. It is easy to see that � is a well-de�ned bounded homo-
morphism and that the diagram commutes. Also 
jB is an isomorphism. We need �
an isomorphism as well. Now E = f
(d) ^ (
(b) _ 0E) : b 2 B; d 2 Dg and


(d) ^ (
(b) _ 0E) = (
(d) _ 0E) ^ (
(b) _ 0E)
= 
(d ^ b) _ 0E = �([d ^ b]�):

12



Thus � is onto. Clearly � is one-to-one and T �= S(B; S=�; ��). Also it is clear that

� followed by this isomorphism is 
. �

Since the congruences that arise in the previous theorem are determined largely by
their values on B the question arises whether or not the lattice of bounded dense ex-
tensions of S can be recognized within the lattice of congruences on B. The following
example shows this is not the case.

Example 17 First we note that if � is a lattice congruence on any Stone algebra
satisfying �jD = 4D, then �jD � ker' where ' : B ! F(D)@ : b 7! "b \D. To see
this, let b; c 2 B. Then b�c implies that d _ b�d _ c for all d 2 D. Thus d _ b = d _ c
for all d 2 D from which it follows that "b \ D = "c \ D. Thus '(b) = '(c), or
b (ker') c.
Now let S = 2� 3.

The relations �1 corresponding to the partition f1; bg; fx; dg; f0; b�g and �2 corre-
sponding to the partition f1; bg; fx; d; 0; b�g are both lattice congruences on S. Also
�ijD = 4D and �ijB = ker' for i = 1; 2 where ' : B ! F(D)@ : b 7! "b \D. This
illustrates that it is impossible to recognize the bounded dense extensions of S within
Con(B).

The following lemma shows that a map between bounded dense extensions is
determined by maps on the dense sets together with the triple maps for the bounded
dense extensions. Thus some of the advantage of the simpler maps used for bounded
triples is available for bounded dense extensions of arbitrary Stone algebras.

Lemma 18 The commutative diagram

S T1-

1


2

�
�
�
���

T2

?

�21

(3)

where T1 and T2 are bounded dense extensions of S and �21 is a strong homomorphism,

13



is equivalent to the commutative diagram

B E1-
 1

D�

1

E2

 2

�
�
�
���

?

�21 
2

@
@

@
@@I

(4)

where B = B(S), D = D(S),  1;  2 and �21 are strong homomorphisms, 
1 and 
2
are monic, Ei = D(Ti) and Ei is generated by  i(B) [ 
i(D) [ f0Eig, i = 1; 2 and
 2(b) _ 
2(d) 2 
2(D) for all b 2 B, d 2 D.

Proof. Given (3) we may assume that the center of each Ti is B. Denote the dense
set of Ti by Ei and the bounded triple map for Ti by  i for i = 1; 2. It is clear that
the left triangle of (4) exactly describes the map �21 in (3), including the property
�21(0E2) = 0E1. Also the right triangle of (4) is just the restriction of (3) to the
dense sets. Finally, the property  i(b) _ 
i(d) 2 
i(D) says that (
i(B); 
i(D)) is an
admissible pair for Ti, i = 1; 2.
Given (4), (B;Ei;  i) are bounded triples and thus correspond to Stone algebras

Ti = Sb(B;Ei;  i) with bounded dense sets. Also �21 induces a map �21 : T2 ! T1
corresponding to

B E1-
 1

B E2- 2

?

idB

?

�21

Clearly �21 is an isomorphism between the centers; it is a strong homomorphism
since �21 : E2 ! E1 is bounded. Also  i(b) _ 
i(d) 2 
i(D) for all b 2 B; d 2 D,
implies that (B; 
i(D)) is an admissible pair in Ti. The fact that Ei is generated by
 i(B)[
i(D)[f0Eig now implies that 
i : Si = S(B; 
i(D))! Ti are bounded dense
extensions. Finally, since 
1 and 
2 are monic and the right triangle of (4) commutes,
it follows that �21 is an isomorphism from 
2(D) to 
1(D). We obtain the diagram

B F(
1(D))@-
'1

B F(
2(D))@-'2

?

idB

?

F(�21)

where 'i(b) = f
i(d) :  i(b) � 
i(d)g. This diagram is a triple map if for all b 2 B,
F(�21)'2(b) � '1(b). Now

F(�21)'2(b) = "f�21(
2(d)) :  2(b) � 
2(d)g:

14



Suppose 
2(d) �  2(b), then �21(
2(d)) � �21( 2(b)) and by commutativity of the
two triangles in (4), 
1(d) �  1(b), that is �21(
2(d)) = 
1(d) 2 '1(b), and we have
the desired inclusion. It follows that S2 �= S1 and �21 carries T2 to T1 so that we have
(3). �

Theorem 19 The poset of bounded dense extensions of S = S(B;D; ') is a bounded
distributive lattice with 1 = S(B; S; i) and 0 = S(B; S=�D; �), where �D is the con-
gruence de�ned by x�Dy if and only if "x \D = "y \D.

Proof. Let E(S) denote the poset of bounded dense extensions of S and let C(S)
denote the set of all lattice congruences of S, so that D(S) ! S=� is one-to-one.
Then by Theorem 16, we have a bijection C(S) ! E(S) : � 7�! 
� where 
� : S !
Sb(B; S=�; �). If �1 � �2 are congruences in C(S) then we get the diagram

B S=�2-
�2

D�

2

S=�1

�1

�
�
�
���

?

�12 
1

@
@

@
@@I

(5)

where �i and 
i are the inclusion maps into S followed by the quotient map S ! S=�i
for i = 1; 2 and �12 is the map S=�1 ! S=�2 allowed by �1 � �2. Consequently the
diagram is commutative. It also follows easily from the given properties that the left
triangle consists of bounded maps and 
1 and 
2 are monic. [Check the rest of the
lemma conditions that don�t follow directly from the proof of Theorem 16.] Thus we
have that Sb(B; S=�1; �1) � S(B; S=�2; �2) and E(S) �= C(S)op as a poset.
Now, the poset C(S) sits in the complete distributive lattice Con(S) of all lattice

congruences on S: In fact, C(S) is a complete lattice ideal of Con(S) . To see this,
it is clear that the trivial congruence on S, �S, belongs to C(S). Also, if �1 � �2
and D(S) ! S=�2 is one-to-one, then D(S) ! S=�1 must also be one-to-one. Thus
�2 2 C(S) implies �1 2 C(S). Finally, if C is any subcollection of C(S) then it is easy
to see that D(S) ! S= (

W
C) must be one-to-one since

W
C is the transitive closure

of the congruences in C.
It now follows that C(S) is a complete distributive lattice and thus that E(S) �=

C(S)op is also a complete distributive lattice. Since �S is the smallest element of
C(S) , Sb(B; S=�S; ��) = Sb(B; S; i) where i : B ,! S is the inclusion, is the largest
element of E(S): It is easy that the �lter congruence �D on S generated by D; that
is x�Dy if and only if "x \D = "y \D, is the largest element in C(S) and thus the
corresponding element of E(S) is the 0 of the lattice E(S): �

Corollary 20 S is the smallest element of E(S):
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Proof. The congruence corresponding to 
 : S ! S : s = (s _ s�) ^ s�� 7�!
("(s _ s�) _ '(s��); s��) is s � t if and only if

("(s _ s�) _ '(s��); s��) _ (D; 1) = ("(t _ t�) _ '(t��); t��) _ (D; 1)
("(s _ s�) _ ("s�� \D) = ("(t _ t�) _ ("t�� \D)
("(s _ s�) _ "s��) \D = ("(t _ t�) _ "t��) \D
"(s _ s�) ^ s��) \D = "(t _ t�) ^ t��) \D

"s \D = "t \D

This is the condition for the congruence s�Dt. �

5 The Category of Stone Algebras with Bounded
Dense Set

It is now easy to show that S 7! S naturally induces a re�ective functor from the
category of Stone algebras and Stone algebra homomorphisms to the subcategory of
Stone algebras with bounded dense set and strong homomorphisms.

De�nition 21 A subcategory S 0 of a category S is re�ective if there is a functor
R : S ! S 0, called a re�ector, and a natural transformation � : IS ! R from the
identity functor of S to the functor R, with the property that for any map f : S ! T
in the category S with T an object of S 0, there exists a unique map f 0 : R (S) ! T
in S 0 such that f 0 � �S = f , that is, the diagram

S T-
f

�S

�
�
�
���

R(S)

?

f 0

commutes.

Theorem 22 The category Sb of Stone algebras with bounded dense set and strong
homomorphisms is a re�ective subcategory of the category S of Stone algebras with
Stone algebra homomorphisms, with re�ector R : S ! Sb given by

R(S) = S = Sb(B; S; i) and R(f) = f = (f; f);

together with the natural transformation

�S = 
 : S ! S:

16



Proof. It su¢ ces to show that for every Stone lattice homomorphism f : S ! T ,
with T having a bounded dense set, there exists a unique strong homomorphism
f 0 : S ! T with commuting diagram

S T-
f


S
�
�
�
���

S

?

f 0

(6)

that is, f 0 � 
S = f ([1], I.18, Theorem 2). In the case f is one-to-one this follows
immediately from Theorem 13, since the image of f is contained in a bounded dense
extension of S. In the general case, notice �rst that if f 0 exists it is unique since S is
generated by 
S(S) together with the zero of the dense set of S.
Given f : S ! T any Stone map between arbitrary Stone algebras, we de�ne

f = (f; f) : S ! T by the bounded triple map

C T-
i

B S-i

?

f

?

f

It is easy to check that f is a strong homomorphism and that the diagram

T T
-


T

S S
-
S

?

f

?

f

commutes. Now in the case that T has bounded dense set, T is a bounded dense
extension of itself and by Theorem 13 there is a strong map � : T ! T such that the
triangle

T T-
1


T
�
�
�
���

T

?

�

commutes. Then f 0 = � � f is the desired strong homomorphism solving diagram 6.

17



6 Some Examples

1. Let D be any distributive lattice without 0 and with 1. Let B be the two
element Boolean algebra and ' the only bounded morphism from B to F(D)@.
Then S = S(B;D; ') is just D with a bottom added and S is S with a bottom
adjoined to its dense set.

2. Let S be a Stone algebra, D a distributive lattice with 1, and ' : S ! F(D)@
a bounded homomorphism whose range is contained in the sublattice

(D : D) = fF 2 F(D) : F \ "d is principal for all d 2 Dg
of F(D)@. Then S(S;D; ') = f("d _ '(s); s) : d 2 D; s 2 Sg is a sublattice of
the product F(D)@�S with coordinatewise operations, which becomes a Stone
algebra with ("d _ '(s); s)� = ('(s�); s�). Notice that (D : D) contains the
center of F(D)@ as well as the principal �lters of D.
Given a Stone algebra S = S(B;D; '),

S = S(B; S; i) = f(s; b) : s � b; s 2 S; b 2 Bg
� S �B = f("d _ '(b1); b1; b2) : d 2 D; bi 2 B; b1 � b2g
� F(D)@ �B �B:

Now if we de�ne
' : B[2] ! F(D)@ : (b1; b2) 7! '(b1)

then ' is a bounded homomorphism of the Stone algebra B[2] = B into F(D)@
whose image is contained in the center of F(D)@. We get S(B[2]; D; ') =

f("d _ '(b1); b1; b2) : b1 � b2g = S. In other words,

S(B;D; ') = S(B;D; '):
In fact, for any bounded homomorphism ' : S ! F(D)@ into (D : D) , we get
the Stone algebra S0 = S(S;D; ') , which then gives rise to the Stone algebra
S1 = S(S;D; ') , where ' : S ! F(D)@ is given by '(s; b) = '(s) . Iterating
this process we get an increasing chain of structures

S0 � S1 � S2 � � � � :
In the case where S0 = S(B;D; ') is a Stone algebra obtained using the original
triple construction, the sequence obtained is the same as the one obtained by
iterating the application of ( ) to S0. Finally, in the case where S0 = B is a
Boolean algebra, the sequence obtained is

B = B1 � B2 � B3 � � � � � Bn � � � �
where

Bn = f(b1; b2; : : : ; bn) : bi 2 B and b1 � b2 � : : : � bng :
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3. Let D be the lattice D = Nop � 2, where N is the set of natural numbers and
2 = f0; 1g and let B be the four element Boolean algebra f0; 1; b; b�g. The
lattice D has two non-principal �lters, namely D and f(n; 1) : n 2 Ng. Let
' : B ! F(D)@ be the map given by '(b) = f(1; 0); (1; 1)g, '(b�) = f(n; 1) :
n 2 Ng, '(1) = f(1; 1)g, and '(0) = D. Note that '(b) is principal and '(b�)
is not. In general, if D does not have a 0, not both '(b) and '(b�) can be
principal. By Theorem 14, since B is �nite, there are embeddings S � S � S.
These embeddings for S = S(B;D; ') are depicted in the diagram below, with
S black, S black and white, and S black, white and gray.

4. In this example we have a pair of non-principal complementary �lters in the
image of '. Let X = f1=i : i 2 Zg and

xi = fx 2 X : �1=i � xg for i 2 N,
yi = fx 2 X : x � 1=ig for i 2 N.

Then xi [ yj = X for all i; j 2 N. Let D be the lattice generated by fxi; yi :
i 2 Ng in 2X . Then f = fxi : i 2 Ng, g = fyi : i 2 Ng are �lters of D and
f \ g = fXg = 0F(D), f _ g = D = 1F(D). Following is a diagram of S where
S = S(B;D; '), B is the four element Boolean algebra f0; b; b�; 1g and ' is
given by '(b) = f , '(b�) = g.
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