
The Decision Problem

Das Entscheidungsproblem

An Historical Project

Alan Turing’s 1936 paper “On Computable Numbers with an Application
to the Entscheidungsproblem” [3] proved most influential not only for math-
ematical logic, but also for the development of the programmable computer,
and together with work of Alonzo Church (1903–1995) [1, 2] inaugurated
a new field of study, known today as computability. Recall that Turing’s
original motivation for writing the paper was to answer the decision prob-
lem of David Hilbert (1862–1943), which asked whether there is a standard
procedure that can be applied to decide whether an arbitrary statement
(within some system of logic) is provable. A previous project examined the
construction of Turing’s “universal computing machine,” which accepts the
instructions of any other machine M in standard form, and then outputs the
same sequence as M . The concept of a universal machine has evolved into
what now is known as a compiler or interpreter in computer science, and is
indispensable for the processing of any programming language. The ques-
tion then arises, does the universal computing machine provide a solution to
the decision problem? The universal machine is the standard procedure for
answering all questions that can in turn be phrased in terms of a computer
program.

First, study the following excerpts from Turing’s paper [3, p. 232–233]

Automatic machines.

If at each stage the motion of a machine is completely determined by the
configuration, we shall call the machine an “automatic machine” (or a-machine).
. . .

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called
figures) consists entirely of 0 and 1 (the others being called symbols of the second

1

kind), then the machine will be called a computing machine. If the machine is
supplied with a blank tape and set in motion, starting from the correct initial
m-configuration, the subsequence of symbols printed by it which are of the first
kind will called the sequence computed by the machine. . . .

Circular and circle-free machines.

If a computing machine never writes down more than a finite number of
symbols of the first kind, it will be called circular. Otherwise it is said to be
circle-free. . . .

A machine will be circular if it reaches a configuration from which there is
no possible move, or if it goes on moving and possibly printing symbols of the
second kind, but cannnot print any more symbols of the first kind.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free
machine. A number is computable if it differs by an integer from the number
computed by a circle-free machine. . . .

(a) Consider the following machine, T1, which begins in m-configuration a

with a blank tape, reading the blank at the far left. Is T1 circle-free? Justify
your answer.

T1 :

Configuration Behavior
m-config. symbol operation final m-config.

a blank R, P (1) b

a 0 R b

b 1 R, R, P (0) a

b blank (none) a

(b) Consider the following machine, T2, which begins in m-configuration a

with a blank tape, reading the blank at the far left. Is T2 circle-free? Justify
your answer.

T2 :

Configuration Behavior
m-config. symbol operation final m-config.

a blank R, P (1) b

a 0 R b

b 1 R, R, P (0) a

b 0 R a

2

(c) Describe in your own words the key feature which distinguishes a circle-
free machine from a circular machine.

(d) Is the sequence 101001000100001 . . . computable? If so, find a circle-
free machine (with a finite number of m-configurations) that computes this
sequence on every other square (the F -squares) of a tape which is originally
blank. If not, prove that there is no circle-free machine that computes the
above sequence.

Turing’s insight into the decision problem begins by listing all computable
sequences in some order:

φ1, φ2, φ3, . . . , φn, . . . ,

where φn is the n-th computable sequence. Moreover, let φn(k) denote the
k-th figure (0 or 1) of φn. For example, if

φ2 = 101010 . . . ,

then φ2(1) = 1, φ2(2) = 0, φ2(3) = 1, etc. Turing then considers the sequence
β′ defined by β ′(n) = φn(n). If the decision problem has a solution, then:

we can invent a machine D which, when supplied with the S.D [standard de-
scription] of any computing machine M will test this S.D and if M is circular
will mark the S.D with the symbol “u” [unsatisfactory] and if it is circle-free
will mark it with “s” [satisfactory]. By combining the machines D and U [the
universal computing machine] we could construct a machine H to compute the
sequence β ′ [3, p. 247].

(e) Is the number of computable sequences finite or infinite? If finite, list the
computable sequences. If infinite, find a one-to-one correspondence between
the natural numbers, N, and a subset of the computable sequences. Use the
result of this question to carefully explain why H must be circle-free.

(f) Since H is circle-free, the sequence computed by H must be listed among
the φn’s. Suppose this occurs for n = N0. In a written paragraph, explain
how β ′(N0) should be computed. Is it possible to construct a machine H
that computes β ′? If so, find the configuration table for H. If not, what part
of H, i.e., D or U , cannot be constructed? Justify your answer.

(g) Does the universal computing machine solve the decision problem? Ex-
plain.

3

(h) By what name is the decision problem known today in computer science?
Support your answer with excerpts from outside sources.

REFERENCES

[1] Church, A., “An Unsolvable Problem of Elementary Number Theory,”
American Journal of Math., 58 (1936), 345–363.

[2] Church, A., “A Note on the Entscheidungsproblem,” Journal of Symbolic

Logic, 1 (1936), 40–41.

[3] Turing, A., “On Computable Numbers with an Application to the Entschei-
dungsproblem,” Proceedings of the London Mathematical Society, 42 (1936),
230–265.

4

